Control oriented 1D electrochemical model of lithium ion battery
نویسندگان
چکیده
Lithium ion (Li-ion) batteries provide high energy and power density energy storage for diverse applications ranging from cell phones to hybrid electric vehicles (HEVs). For efficient and reliable systems integration, low order dynamic battery models are needed. This paper introduces a general method to generate numerically a fully observable/controllable state variable model from electrochemical kinetic, species and charge partial differential equations that govern the discharge/charge behavior of a Li-ion battery. Validated against a 313th order nonlinear CFD model of a 6 Ah HEV cell, a 12th order state variable model predicts terminal voltage to within 1% for pulse and constant current profiles at rates up to 50 C. The state equation is constructed in modal form with constant negative real eigenvalues distributed in frequency space from 0 to 10 Hz. Open circuit potential, electrode surface concentration/reaction distribution coupling and electrolyte concentration/ionic conductivity nonlinearities are explicitly approximated in the model output equation on a local, electrode-averaged and distributed basis, respectively. The balanced realization controllability/observability gramian indicates that the fast electrode surface concentration dynamics are more observable/controllable than the electrode bulk concentration dynamics (i.e. state of charge). 2007 Elsevier Ltd. All rights reserved.
منابع مشابه
Electrochemical Characterization of Low-Cost Lithium-Iron Orthosilicate Samples as Cathode Materials of Lithium-Ion Battery
Lithium-iron-orthosilicate is one of the most promising cathode materials for Li-ion batteries due to its safety, environmental brightness and potentially low cost. In order to produce a low cost cathode material, Li2FeSiO4/C samples are synthesized via sol-gel (SG; one sample) and solid state (SS; two samples with different carbon content), starting from Fe (III) in the raw materials (lo...
متن کاملTheoretical Assessment of the First Cycle Transition, Structural Stability and Electrochemical Properties of Li2FeSiO4 as a Cathode Material for Li-ion Battery
Lithium iron orthosilicate (Li2FeSiO4) with Pmn21 space group is theoritically investigated as a chathode material of Li-ion batteries using density functional theory (DFT) calculations. PBE-GGA (+USIC), WC-GGA, L(S)DA (+USIC) and mBJ+LDA(GGA) methods under spin-polarization ferromagnetic (FM) and anti-ferromagnetic (AFM) procedure are used to investigate the material properties, includin...
متن کاملNumerical investigation of the parameters of a prismatic lithium ion battery under load for electrical vehicle
Electric vehicles and hybrid electric vehicles are a suitable alternative for vehicles with hydrocarbons fuels to reduce pollution and fossil resources. The batteries operate as the driving force for these vehicles. One of the most critical parameters of the battery is computing the state of charge (SOC). The best range for SOC of lithium-ion battery is between 20% and 90%, and charging and dis...
متن کاملDevelopment of Lifetime Prediction Model of Lithium-Ion Battery Based on Minimizing Prediction Errors of Cycling and Operational Time Degradation Using Genetic Algorithm
Accurate lifetime prediction of lithium-ion batteries is a great challenge for the researchers and engineers involved in battery applications in electric vehicles and satellites. In this study, a semi-empirical model is introduced to predict the capacity loss of lithium-ion batteries as a function of charge and discharge cycles, operational time, and temperature. The model parameters are obtai...
متن کاملA high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material
In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...
متن کامل